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We propose a laser speckle contrast imaging method based on uniting spatiotemporal Fourier transform. First, the raw
speckle images are entirely transformed to the spatiotemporal frequency domain with a three-dimensional (3D) fast Fourier
transform. Second, the dynamic and static speckle components are extracted by applying 3D low-pass and high-pass filter-
ing in the spatiotemporal frequency domain and inverse 3D Fourier transform. Third, we calculate the time-averaged modu-
lation depth with the average of both components to map the two-dimensional blood flow distribution. The experiments
demonstrate that the proposed method could effectively improve computational efficiency and imaging quality.
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1. Introduction

Laser speckle contrast imaging (LSCI) is an in vivo optical im-
aging technique based on the dynamic light scattering of coher-
ent light illumination, which can dynamically monitor blood
perfusion distribution in the microcirculatory system[1]. Due to
the advantages of simplicity, noninvasiveness, high spatiotem-
poral resolution, and full-field imaging[2,3], LSCI is widely used
to assist disease diagnosis and treatments by monitoring blood
flow changes in retinal[4], skin[5], brain[6], hepato-renal intes-
tinal microcirculation[7], and surgical situations[8], which makes
it of significant value in biomedical research and clinical
applications[9].
The statistical analysis of the raw speckle images is the key

to mapping the blood flow image in LSCI, and numerous
studies have aimed to improve the calculation of contrast to
improve the imaging quality and performance[10,11]. In
conventional LSCI techniques, the laser speckle spatial contrast
analysis (LSSCA)[12], laser speckle temporal contrast analysis
(LSTCA)[13], and spatiotemporal laser speckle contrast analysis
(stLASCA)[14] all fall into the domain of filtration procedures
that use the rectangular window to calculate the contrast that
cannot achieve high-quality imaging, high statistical accuracy,
and fast imaging. Recently, the Fourier-based Gaussian sliding
window[15] and the adaptive window[16] were introduced into
the calculation of LSCI, which has made a great breakthrough
in developing LSCI technology. On the other hand, statistical
accuracy, imaging quality, and reconstruction speed are closely

related to the frame number of the raw speckle images[17–19].
The limitations of spatiotemporal statistical window size can
reduce the computation but increase the noise and introduce
system deviation[20]. However, a larger number of frames will
increase the reconstruction time of the blood flow image.
Scholars have conducted many studies on computational and
statistical methods to find the optimal balance between image
quality, frame number, and computational performance[17,20,21].
Skipetrov et al. derived the fluctuation model between the
local spatial speckle contrast square and the frame number.
Furthermore, they analyzed the fluctuation of the spatial speckle
contrast with the sample size in different speckle sizes[20]. Hong
et al. investigated the effect of different sampling frames on the
accuracy of the temporal speckle contrast and revealed a quan-
titative relationship between the sample size and the contrast
value[17]. Considering the effect of red blood cell static compo-
nents from movement direction on contrast, Rege et al. pro-
posed an anisotropic LSCI (aLSCI)[21]. The method uses only
three consecutive speckle images for contrast calculation, which
improves the temporal resolution by reducing the frame num-
ber; meanwhile, the local contrast is calculated along the axial
direction of the vessel, which allows the calculation of vessels
with single-pixel resolution and improves spatial resolution
by reducing the size of the local spatial window.
As can be seen, obtaining high-imaging-quality blood flow

distribution maps requires sacrificing real-time performance.
This is reflected in Refs. [22–26]. Yaguang Zeng’s team
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reconstructed blood flow images based on the modulation depth
(MD) defined by the dynamic and static speckle components
extracted by applying the time-frequency transformation and
filtering to the time-varying signals[22]. This method has great
potential in microangiography, as it is insensitive to blood flow
velocity[22–25]. Besides, due to the frequency-domain analysis
performed on the time sequences of the signals of each pixel,
it can produce high-resolution images. However, it will also lead
to large imaging noise. Thus, we need to increase the frames to
suppress the noise and measurement error. The increase in
frames and the implementation of single-point scanning both
contribute to the rise in the computing load, which can result
in insufficient real-time performance. To address this problem,
Wang et al.[26] proposed a real-time full-field optical angiogra-
phy method using principal component analysis (PCA), which
can reconstruct contrast images with a high signal-to-noise ratio
(SNR) using fewer raw images.
Inspired by the above research, the LSCI based on uniting

spatiotemporal Fourier transform (LSCI-uSTFT) is proposed
to achieve high-quality and fast imaging. This method
utilizes the three-dimensional (3D) Fourier transform to simul-
taneously perform the Fourier transform on the temporal and
spatial domain signals of the raw speckle image sequence.
Subsequently, filtering is applied in the spatiotemporal
frequency domain to separate dynamic and static speckle com-
ponents. The LSCI-uSTFTmethod significantly reduces compu-
tational complexity and takes advantage of spatiotemporal
analysis. Therefore, it can improve the contrast-to-noise
ratio (CNR) and imaging contrast while addressing the long
reconstruction time caused by a large number of frames, result-
ing in enhanced imaging quality and computational efficiency.

2. Materials and Methods

The details of LSCI-uSTFT are described as follows. First, the
raw speckle image sequence (3D speckle image stack) is trans-
formed to a 3D spatiotemporal frequency domain by a 3D fast
Fourier transform. Second, 3D high-pass and low-pass Gaussian
filters are applied to separate the high- and low-frequency com-
ponents in the spatiotemporal frequency domain. Then, we
apply the inverse 3D Fourier transform to both low- and
high-frequency components to obtain the dynamic and static
speckle components. Third, we average both components on
the time sequences at each independent pixel. Finally, we calcu-
late the time-averaged MD to map the two-dimensional (2D)
blood flow distribution.
From the mathematical viewpoint, the LSCI method that uses

a rectangular window for local filtering averages is not the best
way to obtain high-quality imaging. A Fourier-based Gaussian
window for local filtering averages on the raw speckle data can
help to calculate the contrast consistently for each coordinate of
the 3D data, resulting in a highly robust laser speckle contrast
image. Thus, this paper uses 3D Fourier-based Gaussian filters
to separate dynamic and static speckle components. We increase
the spatial dimension in the fast Fourier transform (FFT) and

use 3D-FFT to convert the 3D spatiotemporal speckle data into
the frequency domain and then perform Gaussian filtering. On
the one hand, using a Gaussian filter instead of box filtering has
several advantages. First, the Gaussian function is unimodal,
meaning it will not overly distort the image. Second, the
Fourier transform spectrum of the Gaussian function has a sin-
gle lobe, making it easier to separate high-frequency and low-
frequency signals in the speckle signal. This is particularly useful
in obtaining high-quality blood flow contrast images during
follow-up processing. Third, the Gaussian function can be sep-
arated, which means that the computation amount increases
linearly with the width of the filter template instead of exponen-
tially, thus reducing the computational complexity. On the
other hand, unlike the 1D-FFT used in LSCI based on inten-
sity fluctuation modulation (LSCI-IFM) and 2D-FFT used in
Ref. [15], the 3D-FFT used in LSCI-uSTFT can reduce the com-
putation complexity. Moreover, since the FFT is linear, the
combination of spatial and temporal Fourier transform prolongs
the exposure time of the speckle images in a computational sense
while avoiding the issues of overexposure, saturation, and
reduced contrast that may arise from physical overexposure.
Therefore, utilizing the LSCI-uSTFT in processing spatiotempo-
ral signals of raw speckle images holds great potential for
improving computational efficiency and optimizing the overall
imaging performance.
According to the principle of LSCI, the speckle signal gener-

ated by coherent light irradiation on biological tissue consists of
a dynamic component from moving red blood cells and a static
component from the background[24]. The static speckle compo-
nent does not change with time, while the dynamic speckle com-
ponent varies over time. On a very long exposure speckle image,
due to the temporal variation of the dynamic speckle and the
time-invariance of the static speckle, the dynamic speckle is
smoothed, while the static speckle retains relatively high values.
Therefore, in this paper, the dynamic speckle component can be
obtained by low-pass filtering, while the static speckle compo-
nent can be obtained by high-pass filtering,

ID�x, y, z� = iFFTfL�μ, ν, ς� · Gn�μ, ν, ς�g, (1)

IS�x, y, z� = iFFTfH�μ, ν, ς� · Gn�μ, ν, ς�g, (2)

where Gn�μ, ν, ς� is the spatiotemporal frequency domain signal
obtained by the 3D fast Fourier transform of the raw speckle
image sequence. H�μ, ν, ς� and L�μ, ν, ς� are the 3D Gaussian
high-pass and low-pass filters, respectively. The filtering effect
is related to the cut-off frequency. Therefore, it is necessary to
traverse different cut-off frequencies. The algorithm proposed
in this paper should be applied to each pair of cut-off frequencies
to obtain the corresponding blood flow image. Then, we ran-
domly select the region of interest (ROI) from the blood flow
image to calculate the CNR value. Finally, the CNR values at
each pair of cut-off frequencies should be compared, and the
combination of cut-off frequencies that maximizes the CNR
value for the ROI should be selected as the final result.
Moreover, inverse Fourier transform (iFFT) denotes the inverse
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3D fast Fourier transform, IS�x, y, z� is the static speckle pattern
after filtering and inverse Fourier transform, while ID�x, y, z� is
the dynamic speckle pattern after filtering and inverse Fourier
transform. Finally, we average both the static speckle pattern
and the dynamic speckle pattern on the time sequences at each
independent pixel,

ĪS�x, y� =
P

T
z=1 IS�x, y, z�

T
; ĪD�x, y� =

P
T
z=1 ID�x, y, z�

T
: (3)

The MD[26] definition MD = ĪD�x, y�=ĪS�x, y� is used to
reconstruct the blood flow image.
To illustrate the LSCI-uSTFT method, we set up the LSCI

experimental system shown in Fig. 1 and conducted the follow-
ing phantom and animal verification experiments. First, in the
phantom experiment, we filled a capillary glass tube with an
inner diameter of 0.8 mm and an outer diameter of 1.4 mmwith
1% emulsion. The liquid flow was controlled using a syringe
pump and injected into the tubing at a constant rate of
0.42 mL/s. A low-power semiconductor laser ranging from 0
to 100 mW with a central wavelength of 635 nm was used as
the illuminating light source to ensure no damage to biological
tissue. The laser beam uniformly irradiates the glass capillary
tube at a 60-deg angle of incidence. Then, we used a CCD camera
(Balser acA-2440-75uc) connected to a microscope imaging lens
(0.7× to 4.5×) to capture the raw speckle images at 125 fps
(frames per second). Unlike laser Doppler imaging, whose
intensity fluctuation arises from the frequency shift of single
photons, the intensity fluctuation of LSCI-uSTFT is related to
the motion of scatterers[22]. Thus, the sampling speed is much
lower than that of laser Doppler imaging.
Subsequently, approved by the Ethics Committee for the

Management of Laboratory Animals, School of Medicine,
Huaqiao University, we performed hemoperfusion imaging of
the mesentery on ahealthy male mice (approximately 25 g).

We anesthetized the mouse with approximately 50 mg/kg of
chloral hydrate and positioned it supine on the experimental
table. Then, we made a 3-cm-long incision in the abdominal
region of the mouse using a scalpel to expose the intra-
abdominal region and selected the mesenteric vessel area for
blood flow imaging.
To further explain the advantages of the proposedmethod, we

chose stLASCA and LSCI-IFM methods as references for com-
parison. On the one hand, stLASCA theoretically has the best
imaging quality among conventional LSCI methods[18]. Thus,
by comparing with stLASCA, we can verify whether the pro-
posed method is superior to the conventional LSCI method in
terms of image quality. On the other hand, LSCI-IFM only per-
forms Fourier transform filtering on the speckle image sequence
from the time-domain perspective to separate dynamic and
static speckle components. By comparing with LSCI-IFM, we
can verify whether the LSCI-uSTFT method, which performs
FFT in both time and spatial domains, is superior in imaging
quality and computational efficiency. Furthermore, a limited
spatiotemporal statistical window can reduce the computation
but lead to much image noise and introduce systematic bias
instead. On the contrary, a larger spatiotemporal statistical win-
dow will lose the details, increase the reconstructed time of the
blood flow images, and reduce the temporal resolution[17,18].
In addition, considering that the raw speckle images generally
used in practical applications usually range from 128 to 256
frames, the time and the space windows are set to 256 frames
and 3 × 3 (in stLASCA) to effectively compare CNR values
and the computational efficiency of different methods.

3. Results

Figure 2 shows the blood flow contrast images of LSCI-IFM,
stLASCA, and LSCI-uSTFT in the phantom experiments. We
can note that compared with LSCI-IFM, the blood flow distri-
bution images processed by LSCI-uSTFT have less noise, and
the range between the blood flow signal and the background sig-
nal is larger. Imaging contrast measures the distinguishability
between the blood flow signal and the background signal[27].
Thus, the method proposed in this study has a higher imaging
contrast than LSCI-IFM. However, it is important to note that
we cannot draw a definitive conclusion regarding the superiority
of LSCI-uSTFT over stLASCA based solely on the phantom
experiment because Fig. 2 shows that the denoising ability
and imaging contrast of the LSCI-uSTFT are comparable to
those of stLASCA.
Therefore, we conducted verification on mice further to com-

pare the imaging performance of stLASCA and LSCI-uSTFT.
Figure 3 shows that the background signal has higher values
and is not well distinguished from the blood flow signal in
stLASCA. Besides, the blood flow images tend to saturate, indi-
cating that the standard deviation of the blood flow images
mapped by stLASCA is small, and the measurable signal range
of stLASCA is limited. As a result, stLASCA may not be able to
quantitatively measure the blood flow information in large

Fig. 1. Schematic and experimental diagram. Laser (semiconductor laser,
wavelength 635 nm, output power 0–100 mW); CCD (Balser acA-2440-75uc,
resolution 2448 pixels × 2048 pixels); microscope (0.7× to 4.5×).
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blood vessels with fast blood flow velocities, whose variance is
smaller than the camera noise/lens noise variance. This limita-
tion is due to the utilization of local windows for spatial averag-
ing in stLASCA, which enhances the background signal and
leads to a higher value approximating the blood flow signal.
The method that uses a Fourier-based Gaussian sliding window
to calculate the contrast can partially solve the above prob-
lem[15]. However, this method can make the processed image
look blurry and distorted because it can efficiently smooth the
noise. This makes the outline of blood vessels more distinct,
which is beneficial for the contour extraction of large blood ves-
sels, but it will also lose too much detail and reduce the calcu-
lation accuracy. As a tool for assisting clinical diagnosis and
basic research in life science, LSCI mainly focuses on measuring
hemodynamic parameters. The distortion and loss of blood flow
information will undoubtedly seriously impact diagnosis and
measurement.
Based on the above experiments, it is preliminarily proved

that the proposed method has advantages in improving image
quality. It is mainly reflected in the following aspects. First, com-
pared with LSCI-IFM, the proposed method has a good denois-
ing ability and better distinguishing ability between blood flow
signal and background signal, that is, higher imaging contrast.
Second, compared with stLASCA, the method proposed in this
paper canmeasure a large range of signals, which has advantages
in improving the imaging contrast. Besides, unlike the method
based on contrast to map blood flow images, our method is
based on MD of intensity fluctuations to reconstruct blood flow
images, meaning our method focuses on intensity changes in
blood flow. By focusing on intensity changes in blood flow,

our method can better capture dynamic features such as blood
flow velocity, flow rate, and vascular wall pulsation. This is of
great significance for studying hemodynamics and diagnosing
certain vascular diseases. Moreover, differing from the method
that employs the Fourier transform for implementing sliding fil-
tering to obtain the mean value in the contrast calculation for-
mula[15], our method uses the Fourier transform for frequency-
domain transformation to separate dynamic and static speckle
components, which allows us to study the characteristics of
blood flow and identify any abnormalities or changes that
may be indicative of certain diseases or conditions.
Figure 4 shows the quantization results of CNR, which are

further used to prove that the proposed method can effectively
improve the SNR. As shown in Fig. 4(a), we randomly selected
the ROIs to calculate the CNR and spatial noise of different
methods[21,28]. CNR is used to evaluate the distinction between
blood flow and background signals. Spatial noise is defined as
the normalized value of the pixel intensity variation in the local
area, which can be used to evaluate the noise level of the image.
From the comparison results [Figs. 4(b) and 4(c)], we can note
that CNR increases with the increase in frames, while spatial
noise decreases with the increase in frames. In our approach,
the CNR and the spatial noise, respectively, approach 6 and
0.18 when the frames reach 256, which showed that the CNR
and the noise index with the proposed method are comparable
to stLASCA. In addition, our approach can obtain higher CNR
and lower spatial noise when compared with LSCI-IFM. The
analysis results above are consistent with those shown in Fig. 2.
In general, the three experiments mentioned above have

proved the advantages of the proposed method in improving

Fig. 2. Comparative results of the phantom experiments. (a)–(c) LSCI-IFM, stLASCA, and LSCI-uSTFT images. (A)–(C) Curves of the MD (LSCI-IFM), K (stLASCA), MD
(LSCI-uSTFT) along the dashed line in (a)–(c).

Fig. 3. Comparative results of the in vivo experiments. (a) Normalized blood flow distribution of stLASCA; (b) LSCI-uSTFT image; (c) curves along the dashed line in
(a) and (b).
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image quality indicators such as image contrast and SNR
from subjective quality assessment and objective quantitative
analysis. The experimental results indicate that the proposed
method is superior to LSCI-IFM in image contrast and SNR.
Furthermore, it can measure a larger range of signals while
maintaining a high SNR comparable to stLASCA, resulting in
a more pronounced image contrast.
Figure 5 analyzes the relationship between sample statistics

and contrast. As shown in Fig. 5(a), we randomly selected the
ROIs from the vessel and tissue to analyze the relationship
between MD and frames in LSCI-uSTFT. Figure 5(b) shows
that MD increases significantly within 0 to 64 frames in the ves-
sel and then increases slowly. In the tissue, MD increases

significantly within 0 to 48 frames and then reaches saturation
at higher frames. Overall, in LSCI-uSTFT, with frames increas-
ing, the blood flow signal is gradually enhanced, while the back-
ground signal is also enhanced in a small range but gradually
tends to saturation. The experiment proves that themethod pro-
posed in this paper can improve the strength of the blood flow
signal by increasing the frame number of speckle images without
greatly increasing the strength of the background signal.
Therefore, a wide range of signals can be measured with better
contrast and SNR.
Furthermore, we verified the effect of sample statistics on

blood flow contrast images on mice. Figure 5(c) shows the
results obtained using LSCI-uSTFT to process 16, 32, 64, and
256 frames of raw speckle images, respectively. It can be seen
that, with frames increasing, LSCI-uSTFT can effectively sup-
press the static tissue signals and enhance the dynamic signals
of the vessels. In addition, the signals of vessel 1 and vessel 2
in Fig. 5(c) become clearer, and more details appear in the blood
flow images when more raw speckle images are used. This result
is consistent with the analysis in Fig. 5(b). In a word, LSCI-
uSTFT can improve the imaging quality by increasing the
frames, mainly in image contrast enhancement and noise reduc-
tion of the blood flow images. LSCI-uSTFT directly performs an
overall spatiotemporal frequency domain transformation on the
speckle image sequences M × N × T , and the data with which
LSCI-uSTFT calculates include temporal and spatial fluctuation
information. Thus, LSCI-uSTFT can be regarded as a way to
obtain blood flow images through spatiotemporal analysis; a
similar concept was also reported in the literature[18,26]. Using
a large spatiotemporal window in LSCI-uSTFT can effectively
enhance the dynamic blood flow signals and suppress the static
background signals. Moreover, unlike the spatiotemporal win-
dow averaging in stLASCA, the method proposed in this article
simultaneously performs the Fourier transform on the speckle
signals in the time and spatial domains. This allows for analysis
of the characteristics of the raw speckle signals in the 3D spatio-
temporal frequency domain, improving computational effi-
ciency and CNR. Furthermore, it avoids the limited dynamic
range in imaging caused by spatiotemporal window averaging
in stLASCA.
Figure 6 compares the computational speed of LSCI-IFM,

stLASCA, and LSCI-uSTFT to demonstrate the advantages of

Fig. 5. (a) MD (LSCI-uSTFT) image; (b) relationship between the MD and the
reconstructed frame number; (c) MD (LSCI-uSTFT) images of blood flows
reconstructed with 16, 32, 64, and 256 frames.

Fig. 4. Comparative results of noise suppression ability with different methods. (a) Contrast image obtained by LSCI-uSTFT, where Area1–Area6 are six ROIs
randomly selected; (b) comparison of CNR; (c) comparison of spatial noise.
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LSCI-uSTFT in computational performance. We compared the
computational speed of the proposed method with other algo-
rithms in processing the speckle images with pixels of 492 ×
658 and used the average operation time obtained through
repeated experiments as the evaluation index. All algorithms
were implemented usingMATLAB in the development environ-
ment of MATLAB R2019b. And they were executed on a 64-bit

Ubuntu 20.04.4 LTS operating system using an Intel® Xeon(R)
Silver 4210R CPU (the main frequency is 2.40 GHz, and the
algorithms only utilize one processor core) and a memory of
C620 Series Chipset Family Power Management Controller
(Intel Corporation, 125.5GiB). Figure 6 shows that the calcula-
tion speed of LSCI-uSTFT is significantly higher than that of
LSCI-IFM, where it costs 0.85, 1.19, 1.58, and 2.47 s for 8, 16,
32, and 64 frames, respectively. Compared with LSCI-IFM
(56.87, 66.35, 73.57, and 98.54 s), the time can be saved nearly
60 times, and the gap increases by magnitude with the frames.
When the data include fewer than 128 frames, the calculation
time of stLASCA and LSCI-uSTFT is close. However, as the
frames increase, LSCI-uSTFT gradually shows its advantage.
When the number of frames is up to 1024, the calculation time
(26.67 s) is much shorter than that of stLASCA (198.47 s). It is
because our method directly performs an overall spatiotemporal
frequency-domain transformation and filtering on the time
sequences of speckle images, thus reducing the computational
complexity and improving the computational efficiency.
Considering the analysis results from Figs. 5 and 6 compre-

hensively, we can note that LSCI-uSTFT can improve the imag-
ing quality by increasing the number of frames; meanwhile, it
has advantages in computational efficiency so that the proposed
method can achieve fast and high-quality imaging.

4. Discussions

In summary, in this paper, we propose the LSCI-uSTFT method
to effectively balance imaging quality and computational effi-
ciency for achieving fast and high-quality imaging. The method
uses the 3D Fourier transform to simultaneously analyze the

acquired temporal and spatial speckle signals in the spatiotem-
poral frequency domain. Then, it separates the dynamic blood
flow signal from the static tissue signal with 3D Gaussian filters.
Themethod has the following advantages. (1) It can significantly
improve the SNR of imaging, enhance imaging contrast, and
measure a wide range of blood flow signals. (2) By parallel
processing spatiotemporal information, our method reduces
computational complexity and improves computational effi-
ciency. Specifically, regarding imaging quality, LSCI-uSTFT
can provide comparable or slightly lower CNR and spatial noise
compared to stLASCA. In addition, it possesses the extra benefit
of detecting amore extensive range of blood flow signals, leading
to greater imaging contrast. LSCI-uSTFT also outperforms
LSCI-IFM by improving imaging contrast and obtaining higher
CNR and lower spatial noise, which indicates a better SNR.
Regarding computational efficiency, it is evident that LSCI-
uSTFT has a faster processing speed than stLASCA and LSCI-
IFM. This advantage provides significant value in processing
a large number of frames, ultimately obtaining high CNR and
contrast blood flow distribution images.
Overall, our method is a promising approach to improving

imaging quality and computational efficiency. However, our
method also has some limitations.We use a large spatiotemporal
window M × N × T to obtain high-quality imaging, which will
diminish the sensitivity of microvessel identification. (M and N
represent the spatial pixel size of the speckle image. T is the
number of speckle images.) Although using a large spatiotempo-
ral window for Fourier transform can somewhat reduce the
computation time, the real-time performance is insufficient
for clinical blood flow monitoring. Moreover, in practical appli-
cations, the optimal threshold for filtering in the algorithm is not
fixed and depends on the exposure time and decorrelation time.
Therefore, the algorithm requires an additional step before each
run to obtain the optimal threshold, which lacks convenience. In
the future, further research on the mentioned issues is expected
to promote the clinical application of LSCI technology.
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